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Abstract

A new class of data intensive applications has led to increased demand for cost-
efficient resource sharing approaches. Yet, providing efficient access to widely dis-
tributed data for large numbers of users poses considerable challenges. Most existing
Grid systems are centrally managed, thus hindering their scalable expansion. We
introduce a new distributed, adaptive, and scalable middleware that provides trans-
parent access to data in Data Grids. Our approach relies on dynamic techniques
that adapt replica creation to continuously changing network connectivity and users
behavior. Results from simulations and deployment of our middleware show that
our solution provides better data access performance than static approaches.
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1 Introduction

The data requirements for both scientific and commercial applications in many
areas such as genomics [6], drug discovery [1], astrophysics [3], geology [2], or
climate change modeling [10] are very intensive and stress the increased need
for highly efficient and cost-effective resource sharing and management ap-
proaches [4]. In response, Data Grids were developed based on multiple mid-
dleware solutions that transparently provide access to distributed resources
for large number of users. Yet, providing efficient access to widely distributed
data is still a considerable challenge.

In currently deployed Grid systems, static replication is used to copy data to
sites where it is most requested and popular. There is no support for automatic
replica creation and data placement. Additionally, most existing and deployed
Grid systems and platforms are centrally managed and are quite difficult to
set up and maintain. In these systems, control of resources is centralized and
usually handled by system administrators. Such configurations hinder dynamic
and scalable expansion of the Grid infrastructure and resources.
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To address these issues, new data placement algorithms and replication tech-
niques are needed to ensure efficient access and distribution of data based
on real time users’ and applications’ demands. To that end, we introduce a
new distributed, adaptive, and scalable middleware that provides transparent,
fast, and reliable access to data and storage resources in distributed resource
sharing environments such as Data Grids.

Our approach provides a lightweight framework that supports research and sci-
entific collaborations and enables the creation of larger communities with less
overhead than incurred today. This framework supports also the creation of
small to medium scale Data Grids with large number of users taking advantage
of under-utilized resources. Our approach is inspired by the P2P techniques
that require no centralized management and advocate self organization. We
evaluate the benefit and applicability of our solution via analytical models,
simulations, and emulation. Results from the simulation and the deployment
of our middleware prototype show that our solution provides better data ac-
cess performance with lower resource consumption rates than the currently
used static approaches.

2 Background and Related Work

Replication has been studied extensively and different distributed replica man-
agement strategies have been proposed in the literature [12,13,20]. Replication
has traditionally been used to improve system performance by increasing re-
liability and fault tolerance. In the context of Data Grids, replication ensures
that all users have access to the required data, enables scalability across mul-
tiple locations, and optimizes the use and consumption of network resources.
A leading effort in building Computational and Data Grids was spearheaded
by the Globus team [9] soon followed by additional groups, including the EU
DataGrid [8,4,13].

Many studies have revealed that commonly used Grid systems and toolkits
do not yet provide sufficient support to a large community of users as orig-
inally intended [7]. The Simple Object Access Protocol (SOAP) and Web
Service Description Language (WSDL) are increasingly adopted as a means
to support communication in distributed environments [7,18]. The Open Grid
Service Architecture (OGSA) aims to define a common, standard, and open
architecture for the Grid [18]. The resulting Grid infrastructure combines and
integrates existing Grid technologies [9] and Web services technologies to cre-
ate a distributed Grid computing framework based on the Open Grid Service
Infrastructure (OGSI) [18]. The resulting communication tools however, are
not strong enough to support high performance distributed applications.
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In some existing Data Grids [8], dedicated nodes are responsible for storing
and maintaining replica location indices throughout the system. One major
drawback to such an approach is the centralized management and decision
making. Dynamic replication presents a more attractive approach as deci-
sions are made based on the current access patterns and the availability of
resources.In this paper, we provide a stand-alone framework that is used to
provide efficient access to data but could also be integrated, if needed, with
a job scheduler. The main goal of our approach is to create a distributed
and decentralized mechanism to replicate and manage access to data that is
based on continuous and dynamic evaluation of resource utilization and access
performance.

3 Decentralized Replica Management

Data access models are shaped by the social organization of the data-sharing
community and are affected by the location of data, direction of data flow,
and users’ access patterns. To ensure efficient and easy access to all users,
an organized structure is needed to navigate through the participating sites
and locate requested data. In our approach, based on surveys of data sharing
networks and existing Data Grid models, we use a combination of spanning
tree and ring topologies. Most scientific applications and collaborative research
enterprises that we surveyed fit a combination of hierarchical tree topologies
and flat topologies.

Data on the Grid needs to be easily accessible to users regardless of location,
so to provide easy access, we use a Replica Catalog to support transparent
access to data at each Grid node for local and remote users. The Replica
Catalog provides an indexing of available data sets and a mapping between
file names and their physical location. Each newly created data file or replica
is registered in the catalog. Information stored in the catalog is also replicated
in some cases at a node’s parent or ancestor. Thus, the catalog helps to locate
locally stored data or route data access requests to the appropriate Grid node.

Data Organization Models And Topologies used in our approach are
based on using application level overlay networks to enable scalable growth of
Data Grids and tolerate large number of participants. Topology represents the
connectivity graph formed by the overlay network defined by the set of ap-
plication level connections between the participating nodes in the Data Grid.
The resulting graph defines the communication paths that can be used to nav-
igate through the network and locate data. However, data transfers are the
responsibility of the physical network. The middleware’s responsibility is lim-
ited to locating data sources and the end points of the transfer. Our proposed
framework provides incremental scalability and robustness to dynamic data
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grids. The application level data management overlay can handle a continu-
ously changing number of participating nodes and failures without affecting
the overall performance. An added advantage of this approach is the elimina-
tion of centralized control of data and replica registration, and the balance of
data discovery and lookup among different nodes. Ad hoc spanning trees have
been tried and proven to perform and scale well in P2P systems.

The Grid structure is constructed starting from a root node. When joining
the grid, the new node is added through an existing grid node by attaching
to it as a child node or a sibling. Existing grid nodes are published in a web
page or could be accessed through a web service. New nodes choose from the
list of available nodes using some metric such as proximity of a node to which
the new node needs to attach. For example, a node can choose a parent or
sibling node which is in the same domain. This approach creates an inherent
tree structure.

When a node leaves the tree, it sends a notification message to its parent, sib-
lings, and children. The parent removes the departing node from its children’s
list as do its siblings. The child nodes contact the departing node’s parent
node (their grandparent), and rejoin the tree as its children nodes. To avoid
having a disconnected tree in case a node fails and disconnects before sending
any notification messages, each node periodically checks if its parent is still
alive. If it is not, then the node tries to rejoin the tree by attaching itself to
its grandparent node. Each node maintains a list of connections to its parent,
sibling, and child nodes, along with their physical network properties such as
bandwidth and latency. In addition to that, it also needs to keep track of its
grandparent node. In case both a node’s parent and ancestor fail, the node
rejoins the tree by choosing a new node to attach to from the list of published
nodes, using the same mechanism used by nodes joining the tree for the first
time.

Replica Location and Access are initiated when access to a data set is
needed and the proper request is issued. This request starts a search process
that reaches all the possible nodes that may have a copy of this data set.
When multiple locations are discovered, all are reported back to the requester
who chooses the most appropriate source node. In existing Data Grid imple-
mentations, dedicated nodes store information about the locations of possible
sources [5]. In a more dynamic platform, new nodes might join the grid and
some nodes might leave. This creates the need for an adaptive, dynamic ap-
proach to discover, locate, and access data. Similar attempts were used to
develop search protocols for peer-to-peer (P2P) data sharing, including the
flooding algorithm used in Gnutella [11], the centralized algorithm used in
Napster [15], and the distributed hash-table based protocol used in CAN,
Pastry and Tapestry [19]. A super peer model was introduced in [16] to study
Grid resource discovery based on a P2P model. Many studies have shown that
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using a combination of flat and hierarchical topologies give the best perfor-
mance for message broadcasting.

The data search and location process starts at the local data catalog to check
if the data is stored and available locally. If it is not, then the node sends a
request message to its parent, siblings, and children. Upon receiving a request,
the node first checks the source of the request. If the request is coming from
a child node, then the search is continued up the tree, and the request is
forwarded to the current node’s parent. If the request was received from a
parent node, then the search goes down the tree, and the request is forwarded
to the current node’s children. At the sibling node the request is treated as
being received from a parent node and forwarded down the local subtree. When
the request reaches a node that contains the data, a notification message is
sent to the initial requester before initiating data transfer. The algorithm is
also designed to include, within the notification message, a list of different
target locations where the requested data could be retrieved. The system, in
addition to replicating data, supports and enables the replication of meta-data
stored in the catalogs. This way nodes can publish the list of data sets stored
locally, and send that information to their parent node, thus, creating a global
view of data stored within a subtree at the root of that subtree, and creating a
global catalog at the root of the tree. After receiving a list of possible locations,
the local data management service uses network performance tools to choose
the source that would yield the best data transfer performance.

Cost Model relies mainly on the frequency of data access requests that are
maintained by the resource monitoring service, RNS, at each node. Most ex-
isting studies on access patterns in data grids show that majority of access
requests are reads. Accordingly, in this work, we only consider read-only data
(we will consider write costs in our future work).

In addition to parameters listed above, the replica management service, RMS,
also takes into account the storage capacity and availability at a given grid
node. The frequency of cost estimation calculations is dynamically adjusted
based on the history of the data accesses requested.

To calculate data access cost at a given node in the grid for a given data
object, we associate each data object i at each node v with a nonnegative
read rate λv,i and a nonnegative write rate µv,i that represent the traffic gen-
erated within this node’s local domain related to object i. If there is no local
replica for object i, then the total data transfer cost for this object at node v
is costv,i = (λv,i +µv,i)size(i)d(v, r), where r is the node containing the object
i and d(v, r) is the sum of the edge costs along the path from v to r such
that d(v, r) = 1/bandwidth(v, r), where bandwidth(v1, v2) is the total avail-
able bandwidth between nodes v1, v2. Bandwidth is dynamically computed at
runtime by computing the time to send and receive a sample files from v to r.
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Creating a replica at node v decreases the access cost for all nodes that belong
to the same subtree. Let N be the set of all nodes, and let Tv be the partition
of nodes that would be serviced by v for future access requests to object i.
Indeed, creating a replica at v decreases the read cost of each node in Tv by
size(i)d(v, c(v, r)) and increases the write cost of each node in the N − Tv

by size(i)d(v, c(v, r)) where r is the closest replica location, but it does not
change other costs.

Accumulated access requests at node v are added up and stored in the variable
fv(i). To compute the cost of accessing a data set i, the current node treats all
accumulated incoming transient requests as locally issued and estimates the
total data transfer cost based on its local view as follows:

Costv,i = fv(i)size(i)d(v, c(v, r)) (1)

if Cost(v, i) > τ where τ is a threshold, then a local replica is created. Once
a replica is created, fv(i) is re-initialized. τ is calculated based on cost of
data transfers between v and a designated node u. The data transfer cost
is calculated using the bandwidth estimation using the sample file between v
and u and the accumulated access request count. The storage cost is computed
based on the state of the data objects, their request frequencies, and their sizes.
The least recently and least frequently used replicas are removed to enable the
creation of new ones.

4 Middleware Architecture and Framework

The components of our middleware can be organized in a layered architecture
in which each layer builds on top of and uses the services offered by the lower
layers. Each layer encapsulates a set of services that are described below.

The Communication Layer consists of data transfer and authentication
protocols as well as data organization and overlay support. The transfer and
authentication protocols are used to ensure security, verify users identities, and
maintain data integrity during data transfers. This layer contains the Routing
and Connectivity Service.

The Resource Access Layer consists of basic software and tools that pro-
vide access to available resources and monitors their usage and availability.
This layer also contains the Replica Catalog. The major services encapsulated
in this layer are the Replica Monitoring and Location Services.

The Replica Management Layer consists of services that support the
management and transferring of data between Grid nodes and the creation
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of new replicas. This layer’s components track users’ access patterns, monitor
data popularity, and use input from the lower layers to decide if local replica
creation is needed or not. The major service offered by this layer is the Replica
Creation Service.

A participating Grid node can be any hardware/software that qualifies as a
computing unit such as a supercomputer, workstation or desk-top. The mid-
dleware consists of autonomous and distributed components that run at each
participating Grid node. Each agent is composed of the set of services de-
scribed below and shown in Figure 1.

Resource Monitoring Service monitors resource availability at a given
Grid node and collects statistics about resource usage and data access requests.
Data collected by this service is fed to the Replica Creation Service.

Replica Creation Service creates local replicas based on accumulated access
statistics and an evaluation of the incurred cost of creating a local replica.

Replica Location Service manages the local replica Catalog. Each newly
created file is registered in the catalog. This service is also responsible for lo-
cating requested data that is not available locally by using the Routing and
Connectivity service to route data access requests. We will refer to the Replica
Location and Replica Creation services as Replica Management Service col-
lectively.

Resource Allocation Service allocates space for newly created replicas and
deallocates space from the least frequently and least recently accessed local
replicas.

Routing/Connectivity Service routes outgoing request messages, handles
incoming messages, manages data transfers, as well as monitors a node’s con-
nectivity to its neighbors. This service maintains a list of neighbors to which
the local node is connected to.

5 Simulation Experiments And Results

To study and validate our approach, we started with simulating different repli-
cation strategies to guide our development and deployment of the middleware.
To that end we designed and developed a Data Grid simulation framework:
GridNet [14], through which we modeled realistic scenarios. The simulations
allow us to verify the design and evaluate the performance of our strategies.
The simulation environment enabled us to run multiple tests and supported
an easy framework to change system parameters and experiment scenarios
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with very small overhead.

GridNet was developed in C++ and was built on top of the network simulator
NS [17]. Each Data Grid node in the simulation is able to specify its storage
capacity, organization of its local data files, its relative processor performance,
and to maintain a list of its neighbors and peer replica nodes. The simulator
allows us to specify different types of nodes: client, server and cache nodes.
A server node represents a main storage site, where all or part of the data
within the Data Grid is stored. A cache node corresponds to an intermediate
storage site that is expected to have high storage capacity and to replicate part
of the data stored on the main storage site. A client node represents a site
where data access requests originate and are generated. As shown in Figure 2,
each GridNet node consists of a basic NS node, a storage element, a replica
manager or a monitoring agent, and maintains a replica routing table.

Experiment Setup And Results were based on a three-tier binary tree
Data Grid topology, with a single root server, two levels of caches, and 8 leaves
representing clients. We used 28 sites with 90 data sets and 1000 requests.
Bandwidth between cache client was 10Mb/s while cache-cache and server-
cache were 100MB/s. The simulated events represent access requests, and the
presented results were obtained with simulation of only read requests. The
simulation generates random background traffic in the network and the stream
of requests for the Grid data. We use response time as our performance metric
as it incorporates and represents both the data transfer costs and gains of the
replica placement strategy.

In Figure 2 we show the results obtained from comparing three different scenar-
ios using different replication policies and storage/cache capacities at different
levels of the hierarchy. In Scenario 1, static replication is used with popular
files placed at different cache nodes. In scenario 2, our dynamic replication is
applied with small storage capacities allocated to cache nodes. In scenario 3,
the same dynamic replication is used with larger storage capacities at cache
nodes. The guiding factor of the replication mechanism is the frequency and
origin of access requests from client nodes. We used six data groups for our
experiments: the first four with sizes ranging over 100Mbytes and starting
value ranging from 100Mbytes (for the first data set) to 600Mbytes for data
set four. The last two groups varied sizes over 50Mbytes with starting val-
ues 800 and 950 Mbytes, respectively. The workload at each node consists
of running tasks that require both file access operations and the processing
of the accessed data. The results shown in Figure 2 indicate that replication
improves overall workload performance by up to 60%. With higher network
bandwidths, the performance of high workload scenarios increases noticeably,
and the gains and benefits are more considerable for larger file sizes.
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6 Middleware Deployment

The testbed for our experimentations consists of a cluster of 40 Linux ma-
chines with dual processors and 20 Sun workstations. Both systems were used
to emulate virtual organizations running across multiple organizational do-
mains. The workstations are running the FreeBSD operating system. As a
member of a virtual collaboration and organization, each machine runs the
data management middleware and contributes some of its local storage space.
The data shared by the members of the Grid is placed in the local disk of each
machine. The access permissions on the files determine the users who have
the right to access them. Due to the lack of real Data Grid trace data, we
designed the experiments in a way to emulate existing access patterns within
the scientific community.

For our experiments we use two models, a top down and bottom up models.
The top down model, shown in Figure 3, generates data access requests mostly
at the bottom layer of the hierarchy. All data is originally stored at the root
of the hierarchy. Access requests drive the dynamic replication of popular
data files at different levels of the hierarchy. The data requests are emulated
using a group of 100 files of sizes ranging from 50MBytes to 500Mbytes. User
applications generate data access requests using a Poisson distribution. Among
the 100 files used in the experimentations, we designated a group of 20 data
sets as Interesting Files that most users are interested in accessing when it is
published. Subsequently, the spike in users’ interest may shift to other groups
of interesting files as they become available. The access requests are modeled
in a train fashion; i.e., each set of random requests to regular files is followed
by a set of requests to interesting files.

In the bottom up architecture, shown in Figure 4, the nodes at the bottom of
the hierarchy are the original sources of data. We designed the architecture
in such a way that the leftmost and rightmost nodes at the lower level of the
tree store two groups of Interesting Files. The remaining nodes at this level
each store a different group of data sets. Data access requests are generated
by these same nodes at the lower level. The same data sets described above
and used for the top down model are also used in these experiments. A similar
access pattern as described above was also used in these experiments.

In addition to running the data management agent, each leaf node runs an
application that consists of taking as input a list of data sets, and then posting
read requests for these data sets according to a selected access pattern, then
processing the files. While each node has the ability to issue requests, during
these experiments only leaf nodes do so to maximize the amount of traffic load
generated.
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Experiments Results compare the access response rates at different levels
of the hierarchy using different cost thresholds for the replication algorithm.
If the cost of not replicating a requested data file exceeds the threshold then
the file is replicated. The threshold values used in the experiments were cho-
sen empirically to represent an estimated cost of data transfers between two
different nodes in the Grid.

In the top down experiments we measure the data hits and responses registered
before data is replicated at the nodes at the lower level of the tree. The results
shown on the right of Figure 3 indicate that replicating data using higher cost
thresholds delays the propagation of replicas to lower levels of the hierarchy
since most hits occur at its top level. The results also show that Lowering
the cost threshold triggers data replication at lower levels of the hierarchy at
a faster rate, thus lowering network bandwidth consumption at higher levels
of the structure and decreasing contention and creation of bottlenecks at the
root.

In the next set of experiments we use the bottom up model. In this model
initially, only leaf nodes store data, on average 20 files per node. The total
number of regular files is 80. Throughout different stages of the experiments,
results are collected for different scenarios where both storage availability at
each node and replication threshold are updated. Figure 4 shows the response
rate at both the lower and upper levels of the tree with two different storage
capacity values and different cost values. The results show that an increased
storage capacity decreases considerably resource consumption by replicating
more data at locations closer to frequent users. Access requests at data sources
decrease from over 80% to less than 20%. Since data requests are originating
from other leaf nodes, this means that less bandwidth is consumed when data
is dynamically replicated based on user demands.

The plots in Figure 4 show the performance of the system under two different
storage space capacities at the top of the tree. With higher storage capacity
available at the top level (storage2), more requests are answered at the top
level. Decreasing that capacity pushes nodes at lower levels to replicate more
of the requested and popular data, thus decreasing the need for requests to
travel to the top of the tree. Higher cost threshold values decrease the capacity
of the Grid nodes to replicate larger number of files at a faster rate. Figure 4
shows that with a higher storage capacity, more data is replicated at different
levels of the tree thus decreasing traffic load to the original data sources and
the overall bandwidth consumption. The results also show that with higher
cost threshold values about 50% of the access requests get a hit at a lower level
of the tree with a higher storage capacity. Additionally, the plots show that
a lower storage availability at the lower level of the tree triggers replication
at higher levels of the tree at a faster rate, thus reducing traffic load at the
data sources. Higher storage capacity enables more nodes to replicate more
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files, thereby, reducing the overall traffic load in the network. The overall
results show that our decentralized, dynamic, cost based replica management
middleware and services improve data access performance by up to 30%.

7 Conclusion

In this paper we introduce a new distributed and decentralized data manage-
ment middleware for Data Grids. This is an adaptive and scalable lightweight
framework that enables users to dynamically join and leave the grid. Our repli-
cation management algorithm intelligently and transparently places data in
strategic locations improving the overall data access performance. At the core
of our system lies an analytical model that enables each participating node to
decide when and what resources to contribute. The middleware enables each
node to monitor and control its local storage space and capacity, access to
locally stored files, use of network resources, as well as any other available lo-
cal resources. Our approach takes also advantage of data organization models
that are commonly used and popular in data sharing environments and data
intensive applications.

The results of our simulations and experiments from deploying the middleware
show that dynamic cost based replication outperforms static user initiated
replication. The results also show that the choice of parameters and system
variables used to compute and evaluate data access costs are key to ensuring
good access performance.
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